3.2445 \(\int \frac{(1-2 x)^{5/2}}{(2+3 x)^5 (3+5 x)^{3/2}} \, dx\)

Optimal. Leaf size=173 \[ \frac{7 (1-2 x)^{3/2}}{12 (3 x+2)^4 \sqrt{5 x+3}}+\frac{3997345 \sqrt{1-2 x}}{4032 (3 x+2) \sqrt{5 x+3}}+\frac{22957 \sqrt{1-2 x}}{288 (3 x+2)^2 \sqrt{5 x+3}}+\frac{2051 \sqrt{1-2 x}}{216 (3 x+2)^3 \sqrt{5 x+3}}-\frac{181304825 \sqrt{1-2 x}}{12096 \sqrt{5 x+3}}+\frac{46095555 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{448 \sqrt{7}} \]

[Out]

(-181304825*Sqrt[1 - 2*x])/(12096*Sqrt[3 + 5*x]) + (7*(1 - 2*x)^(3/2))/(12*(2 + 3*x)^4*Sqrt[3 + 5*x]) + (2051*
Sqrt[1 - 2*x])/(216*(2 + 3*x)^3*Sqrt[3 + 5*x]) + (22957*Sqrt[1 - 2*x])/(288*(2 + 3*x)^2*Sqrt[3 + 5*x]) + (3997
345*Sqrt[1 - 2*x])/(4032*(2 + 3*x)*Sqrt[3 + 5*x]) + (46095555*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(
448*Sqrt[7])

________________________________________________________________________________________

Rubi [A]  time = 0.0609107, antiderivative size = 173, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.269, Rules used = {98, 149, 151, 152, 12, 93, 204} \[ \frac{7 (1-2 x)^{3/2}}{12 (3 x+2)^4 \sqrt{5 x+3}}+\frac{3997345 \sqrt{1-2 x}}{4032 (3 x+2) \sqrt{5 x+3}}+\frac{22957 \sqrt{1-2 x}}{288 (3 x+2)^2 \sqrt{5 x+3}}+\frac{2051 \sqrt{1-2 x}}{216 (3 x+2)^3 \sqrt{5 x+3}}-\frac{181304825 \sqrt{1-2 x}}{12096 \sqrt{5 x+3}}+\frac{46095555 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )}{448 \sqrt{7}} \]

Antiderivative was successfully verified.

[In]

Int[(1 - 2*x)^(5/2)/((2 + 3*x)^5*(3 + 5*x)^(3/2)),x]

[Out]

(-181304825*Sqrt[1 - 2*x])/(12096*Sqrt[3 + 5*x]) + (7*(1 - 2*x)^(3/2))/(12*(2 + 3*x)^4*Sqrt[3 + 5*x]) + (2051*
Sqrt[1 - 2*x])/(216*(2 + 3*x)^3*Sqrt[3 + 5*x]) + (22957*Sqrt[1 - 2*x])/(288*(2 + 3*x)^2*Sqrt[3 + 5*x]) + (3997
345*Sqrt[1 - 2*x])/(4032*(2 + 3*x)*Sqrt[3 + 5*x]) + (46095555*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(
448*Sqrt[7])

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 149

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[m]

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{5/2}}{(2+3 x)^5 (3+5 x)^{3/2}} \, dx &=\frac{7 (1-2 x)^{3/2}}{12 (2+3 x)^4 \sqrt{3+5 x}}+\frac{1}{12} \int \frac{\left (\frac{425}{2}-194 x\right ) \sqrt{1-2 x}}{(2+3 x)^4 (3+5 x)^{3/2}} \, dx\\ &=\frac{7 (1-2 x)^{3/2}}{12 (2+3 x)^4 \sqrt{3+5 x}}+\frac{2051 \sqrt{1-2 x}}{216 (2+3 x)^3 \sqrt{3+5 x}}-\frac{1}{108} \int \frac{-\frac{81763}{4}+29601 x}{\sqrt{1-2 x} (2+3 x)^3 (3+5 x)^{3/2}} \, dx\\ &=\frac{7 (1-2 x)^{3/2}}{12 (2+3 x)^4 \sqrt{3+5 x}}+\frac{2051 \sqrt{1-2 x}}{216 (2+3 x)^3 \sqrt{3+5 x}}+\frac{22957 \sqrt{1-2 x}}{288 (2+3 x)^2 \sqrt{3+5 x}}-\frac{\int \frac{-\frac{15125495}{8}+2410485 x}{\sqrt{1-2 x} (2+3 x)^2 (3+5 x)^{3/2}} \, dx}{1512}\\ &=\frac{7 (1-2 x)^{3/2}}{12 (2+3 x)^4 \sqrt{3+5 x}}+\frac{2051 \sqrt{1-2 x}}{216 (2+3 x)^3 \sqrt{3+5 x}}+\frac{22957 \sqrt{1-2 x}}{288 (2+3 x)^2 \sqrt{3+5 x}}+\frac{3997345 \sqrt{1-2 x}}{4032 (2+3 x) \sqrt{3+5 x}}-\frac{\int \frac{-\frac{1784763365}{16}+\frac{419721225 x}{4}}{\sqrt{1-2 x} (2+3 x) (3+5 x)^{3/2}} \, dx}{10584}\\ &=-\frac{181304825 \sqrt{1-2 x}}{12096 \sqrt{3+5 x}}+\frac{7 (1-2 x)^{3/2}}{12 (2+3 x)^4 \sqrt{3+5 x}}+\frac{2051 \sqrt{1-2 x}}{216 (2+3 x)^3 \sqrt{3+5 x}}+\frac{22957 \sqrt{1-2 x}}{288 (2+3 x)^2 \sqrt{3+5 x}}+\frac{3997345 \sqrt{1-2 x}}{4032 (2+3 x) \sqrt{3+5 x}}+\frac{\int -\frac{95832658845}{32 \sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx}{58212}\\ &=-\frac{181304825 \sqrt{1-2 x}}{12096 \sqrt{3+5 x}}+\frac{7 (1-2 x)^{3/2}}{12 (2+3 x)^4 \sqrt{3+5 x}}+\frac{2051 \sqrt{1-2 x}}{216 (2+3 x)^3 \sqrt{3+5 x}}+\frac{22957 \sqrt{1-2 x}}{288 (2+3 x)^2 \sqrt{3+5 x}}+\frac{3997345 \sqrt{1-2 x}}{4032 (2+3 x) \sqrt{3+5 x}}-\frac{46095555}{896} \int \frac{1}{\sqrt{1-2 x} (2+3 x) \sqrt{3+5 x}} \, dx\\ &=-\frac{181304825 \sqrt{1-2 x}}{12096 \sqrt{3+5 x}}+\frac{7 (1-2 x)^{3/2}}{12 (2+3 x)^4 \sqrt{3+5 x}}+\frac{2051 \sqrt{1-2 x}}{216 (2+3 x)^3 \sqrt{3+5 x}}+\frac{22957 \sqrt{1-2 x}}{288 (2+3 x)^2 \sqrt{3+5 x}}+\frac{3997345 \sqrt{1-2 x}}{4032 (2+3 x) \sqrt{3+5 x}}-\frac{46095555}{448} \operatorname{Subst}\left (\int \frac{1}{-7-x^2} \, dx,x,\frac{\sqrt{1-2 x}}{\sqrt{3+5 x}}\right )\\ &=-\frac{181304825 \sqrt{1-2 x}}{12096 \sqrt{3+5 x}}+\frac{7 (1-2 x)^{3/2}}{12 (2+3 x)^4 \sqrt{3+5 x}}+\frac{2051 \sqrt{1-2 x}}{216 (2+3 x)^3 \sqrt{3+5 x}}+\frac{22957 \sqrt{1-2 x}}{288 (2+3 x)^2 \sqrt{3+5 x}}+\frac{3997345 \sqrt{1-2 x}}{4032 (2+3 x) \sqrt{3+5 x}}+\frac{46095555 \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{3+5 x}}\right )}{448 \sqrt{7}}\\ \end{align*}

Mathematica [A]  time = 0.0696793, size = 84, normalized size = 0.49 \[ \frac{46095555 \sqrt{7} \tan ^{-1}\left (\frac{\sqrt{1-2 x}}{\sqrt{7} \sqrt{5 x+3}}\right )-\frac{7 \sqrt{1-2 x} \left (543914475 x^4+1438446565 x^3+1426133132 x^2+628209228 x+103735088\right )}{(3 x+2)^4 \sqrt{5 x+3}}}{3136} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*x)^(5/2)/((2 + 3*x)^5*(3 + 5*x)^(3/2)),x]

[Out]

((-7*Sqrt[1 - 2*x]*(103735088 + 628209228*x + 1426133132*x^2 + 1438446565*x^3 + 543914475*x^4))/((2 + 3*x)^4*S
qrt[3 + 5*x]) + 46095555*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/3136

________________________________________________________________________________________

Maple [B]  time = 0.015, size = 298, normalized size = 1.7 \begin{align*} -{\frac{1}{6272\, \left ( 2+3\,x \right ) ^{4}} \left ( 18668699775\,\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) \sqrt{7}{x}^{5}+60984419265\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{4}+79653119040\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{3}+7614802650\,{x}^{4}\sqrt{-10\,{x}^{2}-x+3}+51995786040\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ){x}^{2}+20138251910\,{x}^{3}\sqrt{-10\,{x}^{2}-x+3}+16963164240\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) x+19965863848\,{x}^{2}\sqrt{-10\,{x}^{2}-x+3}+2212586640\,\sqrt{7}\arctan \left ( 1/14\,{\frac{ \left ( 37\,x+20 \right ) \sqrt{7}}{\sqrt{-10\,{x}^{2}-x+3}}} \right ) +8794929192\,x\sqrt{-10\,{x}^{2}-x+3}+1452291232\,\sqrt{-10\,{x}^{2}-x+3} \right ) \sqrt{1-2\,x}{\frac{1}{\sqrt{-10\,{x}^{2}-x+3}}}{\frac{1}{\sqrt{3+5\,x}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(5/2)/(2+3*x)^5/(3+5*x)^(3/2),x)

[Out]

-1/6272*(18668699775*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*7^(1/2)*x^5+60984419265*7^(1/2)*arctan
(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^4+79653119040*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+
3)^(1/2))*x^3+7614802650*x^4*(-10*x^2-x+3)^(1/2)+51995786040*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+
3)^(1/2))*x^2+20138251910*x^3*(-10*x^2-x+3)^(1/2)+16963164240*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x
+3)^(1/2))*x+19965863848*x^2*(-10*x^2-x+3)^(1/2)+2212586640*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3
)^(1/2))+8794929192*x*(-10*x^2-x+3)^(1/2)+1452291232*(-10*x^2-x+3)^(1/2))*(1-2*x)^(1/2)/(2+3*x)^4/(-10*x^2-x+3
)^(1/2)/(3+5*x)^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 2.46005, size = 400, normalized size = 2.31 \begin{align*} -\frac{46095555}{6272} \, \sqrt{7} \arcsin \left (\frac{37 \, x}{11 \,{\left | 3 \, x + 2 \right |}} + \frac{20}{11 \,{\left | 3 \, x + 2 \right |}}\right ) + \frac{181304825 \, x}{6048 \, \sqrt{-10 \, x^{2} - x + 3}} - \frac{189299515}{12096 \, \sqrt{-10 \, x^{2} - x + 3}} + \frac{343}{108 \,{\left (81 \, \sqrt{-10 \, x^{2} - x + 3} x^{4} + 216 \, \sqrt{-10 \, x^{2} - x + 3} x^{3} + 216 \, \sqrt{-10 \, x^{2} - x + 3} x^{2} + 96 \, \sqrt{-10 \, x^{2} - x + 3} x + 16 \, \sqrt{-10 \, x^{2} - x + 3}\right )}} + \frac{13181}{648 \,{\left (27 \, \sqrt{-10 \, x^{2} - x + 3} x^{3} + 54 \, \sqrt{-10 \, x^{2} - x + 3} x^{2} + 36 \, \sqrt{-10 \, x^{2} - x + 3} x + 8 \, \sqrt{-10 \, x^{2} - x + 3}\right )}} + \frac{466361}{2592 \,{\left (9 \, \sqrt{-10 \, x^{2} - x + 3} x^{2} + 12 \, \sqrt{-10 \, x^{2} - x + 3} x + 4 \, \sqrt{-10 \, x^{2} - x + 3}\right )}} + \frac{1301839}{576 \,{\left (3 \, \sqrt{-10 \, x^{2} - x + 3} x + 2 \, \sqrt{-10 \, x^{2} - x + 3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^5/(3+5*x)^(3/2),x, algorithm="maxima")

[Out]

-46095555/6272*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 181304825/6048*x/sqrt(-10*x^2 - x +
 3) - 189299515/12096/sqrt(-10*x^2 - x + 3) + 343/108/(81*sqrt(-10*x^2 - x + 3)*x^4 + 216*sqrt(-10*x^2 - x + 3
)*x^3 + 216*sqrt(-10*x^2 - x + 3)*x^2 + 96*sqrt(-10*x^2 - x + 3)*x + 16*sqrt(-10*x^2 - x + 3)) + 13181/648/(27
*sqrt(-10*x^2 - x + 3)*x^3 + 54*sqrt(-10*x^2 - x + 3)*x^2 + 36*sqrt(-10*x^2 - x + 3)*x + 8*sqrt(-10*x^2 - x +
3)) + 466361/2592/(9*sqrt(-10*x^2 - x + 3)*x^2 + 12*sqrt(-10*x^2 - x + 3)*x + 4*sqrt(-10*x^2 - x + 3)) + 13018
39/576/(3*sqrt(-10*x^2 - x + 3)*x + 2*sqrt(-10*x^2 - x + 3))

________________________________________________________________________________________

Fricas [A]  time = 1.83729, size = 443, normalized size = 2.56 \begin{align*} \frac{46095555 \, \sqrt{7}{\left (405 \, x^{5} + 1323 \, x^{4} + 1728 \, x^{3} + 1128 \, x^{2} + 368 \, x + 48\right )} \arctan \left (\frac{\sqrt{7}{\left (37 \, x + 20\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{14 \,{\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \,{\left (543914475 \, x^{4} + 1438446565 \, x^{3} + 1426133132 \, x^{2} + 628209228 \, x + 103735088\right )} \sqrt{5 \, x + 3} \sqrt{-2 \, x + 1}}{6272 \,{\left (405 \, x^{5} + 1323 \, x^{4} + 1728 \, x^{3} + 1128 \, x^{2} + 368 \, x + 48\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^5/(3+5*x)^(3/2),x, algorithm="fricas")

[Out]

1/6272*(46095555*sqrt(7)*(405*x^5 + 1323*x^4 + 1728*x^3 + 1128*x^2 + 368*x + 48)*arctan(1/14*sqrt(7)*(37*x + 2
0)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3)) - 14*(543914475*x^4 + 1438446565*x^3 + 1426133132*x^2 + 6282
09228*x + 103735088)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(405*x^5 + 1323*x^4 + 1728*x^3 + 1128*x^2 + 368*x + 48)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(5/2)/(2+3*x)**5/(3+5*x)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 3.76462, size = 591, normalized size = 3.42 \begin{align*} -\frac{9219111}{12544} \, \sqrt{70} \sqrt{10}{\left (\pi + 2 \, \arctan \left (-\frac{\sqrt{70} \sqrt{5 \, x + 3}{\left (\frac{{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \,{\left (\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}\right )}}\right )\right )} - \frac{605}{2} \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )} - \frac{605 \,{\left (77025 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{7} + 51138136 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{5} + 12067876800 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{3} + 984130112000 \, \sqrt{10}{\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}\right )}}{224 \,{\left ({\left (\frac{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}{\sqrt{5 \, x + 3}} - \frac{4 \, \sqrt{5 \, x + 3}}{\sqrt{2} \sqrt{-10 \, x + 5} - \sqrt{22}}\right )}^{2} + 280\right )}^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)/(2+3*x)^5/(3+5*x)^(3/2),x, algorithm="giac")

[Out]

-9219111/12544*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt
(22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 605/2*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqr
t(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))) - 605/224*(77025*sqrt(10)*((sqrt(
2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^7 + 51138
136*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) -
sqrt(22)))^5 + 12067876800*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqr
t(2)*sqrt(-10*x + 5) - sqrt(22)))^3 + 984130112000*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3
) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3
) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280)^4